

 AC – 27/12/2023

 Item No. – 6.8 (N)

As Per NEP 2020

University of Mumbai

Title of the program

A- U.G. Certificate in Computer Science

B- U.G. Diploma in Computer Science

C- B.Sc. (Computer Science)

D- B.Sc. (Hons.) in Computer Science

E- B.Sc. (Hons. with Research) in Computer Science

Syllabus for

Semester – I & II

 Ref: GR dated 20th April, 2023 for Credit Structure of UG

 (With effect from the academic year 2024-25 progressively)

University of Mumbai

 (As per NEP 2020)

Sr. No. Heading Particulars

1 Title of program

O: _____________A
A U.G. Certificate in Computer Science

O: _____________B
B U.G. Diploma in Computer Science

O: _____________C

C B.Sc. (Computer Science)

O: _____________D

D B.Sc. (Hons.) in Computer Science

O: _____________E
 E

B.Sc. (Hons. with Research) in

Computer Science

2 Eligibility

O: _____________A

A

A candidate for being eligible for

admission must have passed Higher

Secondary School Certificate

Examination (Std. XII) in Science stream

conducted by the Maharashtra State Board

of Secondary and Higher Secondary

Education with Mathematics and

Statistics as one of the subject or its

equivalent. Admission will be on merit,

based on order of preference as follows:

1. Aggregate Marks at H.S.C. or

equivalent.

2. Aggregate Marks in Science Group

(Physics, Chemistry and Mathematics)

3. Marks in Mathematics and Statistics

and Physics. Marks in Mathematics

and Statistics.

OR

Passed Equivalent Academic Level 4.0

with Mathematics and Statistics as one

of the subject

O: _____________B
 B

Under Graduate Certificate in Computer

Science Academic Level 4.5

O: _____________C
C

Under Graduate Diploma in Computer

Science Academic Level 5.0

O: _____________D

D

Bachelors of Science in Computer Science

with minimum CGPA of 7.5 Academic

Level 5.5

O: _____________E

E

Bachelors of Science in Computer Science

with minimum CGPA of 7.5 Academic

Level 5.5

3 Duration of program

R: _____________
A One Year

B Two Years

C Three Years

D Four Years

E Four Years

4 Intake Capacity

R: ______________

5 Scheme of Examination

R: ______________

NEP

40% Internal

60% External, Semester End Examination

Individual Passing in Internal and External

Examination

6 Standards of Passing

R: ______________ 40% in each component

7 Credit Structure

Sem. I - R: _______________A

Sem. II - R: ______________ B

Attached herewith

Credit Structure

Sem. III - R: ______________C

Sem. IV - R: ______________D

Credit Structure

Sem. V - R: _______________E

Sem. VI - R: ______________F

8 Semesters A Sem I & II

B Sem III & IV

C Sem V & VI

D Sem VII & VIII

E Sem VII & VIII

9 Program Academic Level A 4.5

B 5.0

 C 5.5

 D 6.0

 E 6.0

10 Pattern Semester

11 Status New

12 To be implemented from Academic

Year Progressively
From Academic Year: 2024-25

This syllabus is applicable to IDOL students as well, w. e. f. 2025-26.

Sign of the BOS Chairman

Dr. Jyotshna Dongardive
Ad-hoc BOS (Computer Science)

Sign of the Offg. Associate Dean

Dr. Madhav R. Rajwade
Faculty of Science & Technology

Sign of Offg. Dean

Prof. Shivram S. Garje
Faculty of Science & Technology

Preamble

1) Introduction

In the era of Information and Communication Technology (ICT), the transformative impact of

computers on society is undeniable. The pervasive applications of computing across diverse fields

have given rise to dynamic industries, evolving in tandem with the swift pace of technological change.

As the landscape of the computing field continues to advance, it becomes imperative for students to

cultivate a robust foundation that not only facilitates their current skills but also empowers them to

adapt to the evolving nature of the field.

In line with the National Education Policy (NEP) 2020, our revised Computer Science program is

designed to instill in students the ability to navigate the ever-changing technological terrain.

Recognizing that specific languages and platforms may undergo transformations, the curriculum

places a strong emphasis on fostering adaptability. Students will not only be exposed to a diverse

array of programming languages, tools, paradigms, and technologies but will also delve into the

fundamental principles that underpin the realm of computer science.

The core of our program encompasses essential courses such as programming languages, data

structures, computer architecture and organization, algorithms, database systems, operating systems,

and software engineering. Complementing these foundational elements are specialized courses in

areas such as artificial intelligence, computer-based communication networks, distributed computing,

information security, graphics, human-computer interaction, multimedia, scientific computing, web

technology, and other cutting-edge topics in computer science.

Key Philosophy of the Program:

 Form Strong Foundations: Lay the groundwork for a comprehensive understanding of Computer

Science.

 Nurture Skills: Develop programming, analytical, and design skills to tackle real-world problems

effectively.

 Introduce Gradually: Familiarize students with emerging trends in a gradual and coherent manner.

 Prepare for Industry Challenges: Groom students to meet the challenges of the ICT industry with

confidence and competence.

In acknowledgement of the evolving aspirations of students, our program not only prepares them for

careers in the industry but also opens doors to research opportunities. The primary goal is to deliver

a modern curriculum that equips graduates with both theoretical depth and practical acumen,

empowering them to excel in the workplace while fostering a mindset of lifelong learning.

This program not only paves the way for a successful career in the software industry but also inspires

students to pursue further studies and research opportunities. Graduates can seamlessly transition into

postgraduate programs in Computer Science, leading to research and development roles, employment

in IT industries, or even a career in business management.

As we unveil this syllabus, we invite students on a journey of exploration, learning, and innovation,

ensuring they are not only prepared for the present but also poised to shape the future of Computer

Science.

2) Aims and Objectives

Understanding and Knowledge Base: Develop a profound understanding and knowledge of the

fundamental theories, systems, and applications that form the bedrock of Computer Science. This

includes establishing a strong foundation in theoretical concepts and cultivating expertise in the

practical application of Computer Science theories.

Analytical Abilities and Problem Solving: Foster essential skills and analytical abilities required

for devising computer-based solutions to real-life problems. This involves developing critical

thinking skills for problem identification and analysis, as well as cultivating the ability to design and

implement effective solutions using computational tools.

Training in Emerging Technologies: Provide training in emergent computing technologies,

facilitating the development of innovative solutions for both industry and academia. This includes

exposing students to cutting-edge technologies and their applications, as well as encouraging

exploration and experimentation with emerging tools and platforms.

Preparation for Post-Graduate Studies: Develop the necessary study skills and knowledge for

students to pursue further post-graduate study in Computer Science or related fields. This involves

equipping students with the academic rigor required for advanced studies and fostering a passion for

continuous learning and research in the field.

Professional Skillset Development: Develop the professional skillset required for a successful

career in an information technology-oriented business or industry. This includes providing practical

exposure to industry-relevant tools and practices, as well as instilling a sense of professional ethics

and responsibility.

Independent and Collaborative Work: Enable students to work independently and collaboratively,

communicate effectively, and become responsible, competent, confident, insightful, and creative

users of computing technology. This involves cultivating independence in problem-solving and

project execution, as well as enhancing communication and collaboration skills for effective

teamwork.

3) Learning Outcomes

At the end of three year Bachelor of Computer Science the students will be able:

 Formulate, model, and design solutions and procedures, utilizing software tools to address real-world

problems effectively.

 Design and develop computer programs and computer-based systems in diverse areas such as

networking, web design, security, cloud computing, IoT, data science, and other emerging

technologies.

 Familiarize themselves with modern-day trends in industry and research-based settings, fostering the

ability to innovate novel solutions to existing problems.

 Apply concepts, principles, and theories related to computer science to new and challenging

situations.

 Demonstrate proficiency in using current techniques, skills, and tools essential for computing

practice.

 Apply standard Software Engineering practices and strategies in real-time software project

development.

 Pursue higher studies of specialization and confidently enter technical employment.

 Work independently or collaboratively as effective team members on substantial software projects,

showcasing project management and teamwork skills.

 Communicate and present their work effectively and coherently, both in oral and written formats.

 Display ethical conduct in the usage of the Internet and Cyber systems, understanding and adhering

to ethical standards in computing practices.

 Engage in independent and life-long learning, adapting to the rapidly changing IT industry and

staying abreast of evolving technologies.

4) Credit Structure of the Program (Sem I, II, III & IV) (Table as per Parishisht 2 with sign of HOD and Dean)

Under Graduate Certificate in Computer Science

R:______________A

Level Semester

Major

Minor OE
VSC, SEC

(VSEC)

AEC,

VEC,

IKS

OJT, FP,

CEP, CC,

RP

Cum.
Cr. /

Sem.

Degree/
Cum. Cr. Mandatory Electives

4.5

I

MJ1: Digital Systems &

Architecture (TH) – 2

MJ2: Fundamentals of

Database Systems (TH) – 2

MJP1: Computer Science

Practical 1 (PR) – 2

6

- - 2+2

VSC:2

Introduction to

Programming with

Python – 2

SEC:2

Statistics with R

Programming – 2

OR

Linux Operating

System – 2

AEC:2,
VEC:2,
IKS:2

CC:2 22

UG

Certificate

44

R:______________B

II

MJ3: Design & Analysis of

Algorithms (TH) – 2

MJ4: Object Oriented

Programming (TH) – 2

MJP2: Computer Science

Practical 2 (PR) – 2

6

- 2 2+2

VSC:2

Web Technologies

– 2

SEC:2

Database

Management

Systems using

PL/SQL – 2

OR

Advanced Python

Programming – 2

AEC:2,
VEC:2 CC:2 22

Cum Cr. 12 - 2 8 4+4 4+4+2 4 44

Exit option: Award of UG Certificate in Major with 40-44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with

Major and Minor

Under Graduate Diploma in Computer Science

 R:_________________C

Level Semester

Major

Minor OE
VSC, SEC

(VSEC)

AEC,

VEC,

IKS

OJT, FP,

CEP, CC,

RP

Cum.
Cr. /

Sem.

Degree/
Cum. Cr. Mandatory Electives

5.0

III

MJ5: Principles of Operating Systems

(TH) – 2

MJ6: Theory of Computation (TH) – 2

MJ7: Data Structures (TH) – 2

MJP3: Computer Science Practical 3

(PR) – 2

8

- 4 2

VSC:2

Java

Programming –

2

AEC:2 FP: 2 CC:2 22

UG

Diploma

88

R:_________________D

IV

MJ8: Computer Networks (TH) – 2

MJ9: Software Engineering (TH) – 2

MJ10: IoT Technologies (TH) – 2

MJP4: Computer Science Practical 4

(PR) – 2

8

- 4 2

SEC:2

Mobile

Application

Development –

2

OR

MEAN Stack

Development –

2

AEC:2

CEP: 2

CC:2

22

Cum Cr. 28 - 10 12 6+6 8+4+2 8+4 88

Exit option; Award of UG Diploma in Major and Minor with 80-88 credits and an additional 4 credits core NSQF course/ Internship OR Continue

with Major and Minor

B.Sc. (Computer Science)

 R:________________E

Level Semester Major Minor OE VSC, SEC

(VSEC)

AEC,

VEC,

IKS

OJT, FP,

CEP, CC,

RP

Cum. Cr.
/

Sem.

Degree/
Cum. Cr.

Mandatory Electives

5.5

V

MJ11: Artificial Intelligence (TH)

– 2

MJ12: Cyber & Information

Security (TH) – 2

MJ13: Moral & Ehtical AI (TH) –

2

MJP5: Computer Science Practical

5 (PR) – 2

MJP6: Mini Project – I (PR) – 2

10

MJEL1: Software Testing &

Quality Assurance (TH) – 2

OR

MJEL2: Wireless & Sensor

Networks (TH) – 2

MJELP1: Software Testing &

Quality Assurance Practical (PR) –

2

OR

MJELP2:Wireless & Sensor

Networks Practical (PR) – 2

4

4 -

VSC: 2

Ethical

Hacking

– 2

- FP/CEP: 2 22

UG

Degree

132
R:________________F

VI

MJ14: Data Science (TH) – 2

MJ15: Cloud Computing (TH) – 2

MJ16: Software Project

Management (TH) – 2

MJP7: Computer Science Practical

6 (PR) – 2

MJP8: Mini Project – II (PR) – 2

10

MJEL3: Information Retrieval

(TH) – 2

OR

MJEL4: Linux Server

Administration (TH) – 2

MJELP3: Information Retrieval

Practical (PR) – 2

OR

MJELP4: Linux Server

Administration Practical (PR) – 2

4

4 - - - OJT:4 22

Cum Cr. 48 8 18 12 8+6 8+4+2 8+6+4 132

Exit option: Award of UG Degree in Major with 132 credits OR Continue with Major and Minor

[Abbreviation - OE – Open Electives, VSC – Vocation Skill Course, SEC – Skill Enhancement Course, (VSEC), AEC – Ability Enhancement

Course, VEC – Value Education Course, IKS – Indian Knowledge System, OJT – on Job Training, FP – Field Project, CEP – Continuing Education

Program, CC – Co-Curricular, RP – Research Project]

Semester I

Component
Major

Minor OE VSC SEC AEC VEC IKS CC Total
Mandatory Electives

Credits 2+2+2 --- --- 2+2 2 2 2 2 2 2 22

Component Subject Total Credits

Major Digital Systems & Architecture 2

Major Fundamentals of Database Systems 2

Major Computer Science Practical 1 2

VSC Introduction to Programming with Python 2

SEC (any one)
Statistics with R Programming

2
Linux Operating System

Semester II

Component
Major

Minor OE VSC SEC AEC VEC IKS CC2 Total
Mandatory Electives

Credits 2+2+2 --- 2 2+2 2 2 2 2 --- 2 22

Component Subject Total Credits

Major Design & Analysis of Algorithms 2

Major Object Oriented Programming using C++ 2

Major Computer Science Practical 2 2

VSC Web Technologies 2

SEC (any one)
Database Management Systems using PL/SQL

2
Advanced Python Programming

Sem – I

Name of the Course: Digital System and Architecture

Sr. No. Heading Particulars

1 Description the course: Introduction:

The Digital Systems and Architecture course serves as a

foundational exploration into the fundamental principles

governing digital systems and computer architecture.

This course delves into the design and organization of

digital circuits and systems that form the backbone of

modern computing devices.

Relevance:

In the era of rapid technological advancement,

understanding digital systems and architecture is

paramount. From smartphones to supercomputers,

digital systems are pervasive. This course is essential for

anyone aspiring to comprehend the inner workings of

these systems and contribute to their development.

Usefulness:

The course equips students with the knowledge and

skills to design, analyze, and optimize digital systems. It

serves as a gateway for students to explore various

aspects of computer architecture, laying the groundwork

for more advanced studies and applications in the field.

Application:

Knowledge gained in this course finds practical

applications in diverse domains, including embedded

systems, computer networks, signal processing, and

beyond. Students will learn how to translate theoretical

concepts into tangible solutions, bridging the gap

between abstraction and real-world implementation.

Interest:

Digital System and Architecture is an intellectually

stimulating course that captivates students with its blend

of theoretical concepts and hands-on application. The

allure of creating efficient and high-performing digital

systems often sparks curiosity and enthusiasm among

students.

Connection with Other Courses:

This course establishes crucial linkages with other

courses in computer science. It provides a solid

foundation for more advanced courses such as computer

organization, microprocessor systems, and hardware

description languages. The knowledge gained here

forms a seamless continuum in the study of computer

systems.

Demand in the Industry:

As the demand for faster, more efficient computing

systems continues to rise, professionals well-versed in

digital systems and architecture are highly sought after.

Industries ranging from electronics and

telecommunications to automotive and healthcare

actively seek individuals with expertise in designing and

optimizing digital systems.

Job Prospects:

Graduates with proficiency in digital systems and

architecture find themselves well-positioned for a

myriad of career opportunities. Roles may include

digital design engineer, embedded systems developer,

hardware architect, and systems analyst. The skills

acquired in this course open doors to a wide array of

industries where digital technology plays a pivotal role.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To understand fundamentals of Logic gates, Number system and Flip Flops.

CO 2. To have an understanding of Digital System and Operation of a Digital

Computer.

CO 3. To Learn Different Architecture & Organization of memory system,

processor organization and control unit.

CO 4. Basic understanding of 8085 microprocessor and its applications.

8 Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. Learn how number system and codes are useful in computer system design.

OC 2. Learn how Flip Flops are useful in memory design and data communication

through CPU and Memory and I/O devices.

OC 3. Learn about basics of instruction sets and its types.

OC 4. Learn about Processor Internal Architecture and Design.

9 Modules:-

Module 1 (15 hours):

Fundamentals of Digital Logic: Boolean algebra, Logic Gates, Simplification of

Logic Circuits: Algebraic Simplification, Karnaugh Maps.

Combinational Circuits: Adders, Subtractors, Multiplexer, De-Multiplexer.

Sequential Circuits: Flip- Flops (SR, JK & D), Counters: synchronous and

asynchronous Counter.

Computer System: Comparison of Computer Organization & Architecture,

Computer Components and Functions, Interconnection Structures. Bus

Interconnections, Input / Output: I/O Module Programmed I/O, Interrupt Driven I/O,

Direct Memory Access.

Module 2 (15 hours):

Memory System Organization: Classification and design parameters, Memory

Hierarchy, Internal Memory: RAM, SRAM and DRAM, Interleaved and Associative

Memory. Cache Memory: Design Principles, Memory mappings, Replacement

Algorithms, Cache performance, Cache Coherence. Virtual Memory, External

Memory: Magnetic Discs, Optical Memory, Flash Memories, RAID Levels

Instructions: Instruction Formats, Instruction Sets, Addressing Modes, Addressing

Modes Examples with Assembly Language [8085/8086 CPU].

Processor Organization: Structure and Function. Register Organization

[8085/8086 CPU]. Basic Microprocessor operations: Data Transfer (Register /

Memory) Operations, Arithmetic & Logical Operations.

Instruction Cycle, Instruction Pipelining. Introduction to RISC and CISC

Architecture, Instruction Level Parallelism and Superscalar Processors, Design

Issues.

10 Text Books

1. M. Mano, Computer System Architecture 3rd edition, Pearson

2. Carl Hamacher et al., Computer Organization and Embedded Systems, 6

ed., McGraw-Hill 2012

3. R P Jain, Modern Digital Electronics, Tata McGraw Hill Education Pvt. Ltd. ,

4th Edition, 2010

11 Reference Books

1. William Stallings (2010), Computer Organization and Architecture-

designing for performance, 8th edition, Prentice Hall, New Jersy.

2. Anrew S. Tanenbaum (2006), Structured Computer Organization, 5th edition,

PearsonEducation Inc,

3. John P. Hayes (1998), Computer Architecture and Organization, 3rd edition,

Tata McGrawHill

4. Ramesh Gaonkar (2013), Microprocessor Architecture, Programming and

Application with 8085, 6th edition, Penram.

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory Examination

of 1 hour duration for 30 marks as per

the paper pattern given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Fundamentals of Database Systems

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Fundamentals of Database Systems course is a

foundation in the study of information management and

technology. It provides students with a comprehensive

understanding of the principles, design, and implementation

of databases, which are critical components in virtually

every domain where data is utilized.

Relevance:

In today’s data-driven world, the management and retrieval

of information are paramount. This course is highly relevant

as it addresses the core concepts essential for organizing,

storing, and manipulating data efficiently.

Usefulness:

This course is immensely useful for individuals aspiring to

work with data in various capacities. Whether designing

databases, developing applications that interact with

databases, or analyzing data trends, a solid understanding of

database fundamentals is crucial.

Application:

The principles learned in this course find application across

diverse sectors, including business, healthcare, finance, and

technology. Students will gain the skills to model real-

world scenarios, design efficient databases, and implement

systems that store and retrieve information seamlessly.

Interest:

This course often attracts students due to its practical and

tangible applications. The ability to structure and manage

data effectively, ensuring its integrity and accessibility, can

be intellectually stimulating and applicable to numerous

real-world scenarios.

Connection with Other Courses:

This course forms a vital connection with various other

courses in computer science and information technology. It

is foundational to courses like database management, data

warehousing, and data mining. Additionally, it

complements courses related to software development,

ensuring a holistic understanding of system architecture.

Demand in the Industry:

As businesses and organizations amass ever-growing

volumes of data, there is an increasing demand for

professionals versed in database systems. Industries such as

finance, healthcare, e-commerce, and technology actively

seek individuals who can design, implement, and manage

robust databases.

Job Prospects:

Graduates proficient in the fundamentals of database

systems enjoy promising job prospects. Potential roles

include database administrator, data analyst, database

developer, and business intelligence analyst. These

professionals play a pivotal role in ensuring the efficient

and secure management of an organization's data assets.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits (1 credit = 15 Hours for Theory)

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To make students aware fundamentals of database system.

CO 2. To give idea how ERD components helpful in database design and

implementation.

CO 3. To experience the students working with database using MySQL.

CO 4. To familiarize the student with normalization, database protection and

different DCL Statements.

CO 5. To make students aware about importance of protecting data from

unauthorized users.

CO 6. To make students aware of granting and revoking rights of data

manipulation.

8 Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. To appreciate the importance of database design.

OC 2. Analyze database requirements and determine the entities involved in the

system and their relationship to one another.

OC 3. Write simple queries to MySQL related to String, Maths and Date Functions.

OC 4. Create tables and insert/update/delete data, and query data in a relational

DBMS using MySQL commands.

OC 5. Understand the normalization and its role in the database design process.

OC 6. Handle data permissions.

OC 7. Create indexes and understands the role of Indexes in optimization search.

9 Modules

Module 1 (15 hours):

Introduction to DBMS: Database, DBMS – Definition, Overview of DBMS,

Advantages of DBMS, Levels of abstraction, Data independence, DBMS

Architecture

Data models: Client/Server Architecture, Object Based Logical Model, Record

Based Logical Model (relational, hierarchical, network

Entity Relationship Model and ER to Table: Entities, attributes, entity sets,

relations, relationship sets, Additional constraints (key constraints, participation

constraints, weak entities, aggregation / generalization, Conceptual Design using ER

(entities VS attributes, Entity Vs relationship, binary Vs ternary, constraints beyond

ER) Entity to Table, Relationship to tables with and without key constraints.

DDL Statements: Creating Databases, Using Databases, datatypes, Creating Tables

(with integrity constraints – primary key, default, check, not null), Altering Tables,

Renaming Tables, Dropping Tables, Truncating Tables

DML statements: Viewing the structure of a table insert, update, delete, Select all

columns, specific columns, unique records, conditional select, in clause, between

clause, limit, aggregate functions (count, min, max, avg, sum), group by clause,

having clause

Module 2 (15 hours):

Relational data model: Domains, attributes, Tuples and Relations, Relational Model

Notation, Characteristics of Relations, Relational Constraints - primary key,

referential integrity, unique constraint, Null constraint, Check constraint

Functions: String Functions (concat, instr, left, right, mid, length, lcase/lower,

ucase/upper, replace, strcmp, trim, ltrim, rtrim), Math Functions (abs, ceil, floor, mod,

pow, sqrt, round, truncate) Date Functions(adddate, datediff, day, month, year, hour,

min, sec, now, reverse)

Joining Tables and Subqueries: inner join, outer join (left outer, right outer, full

outer)

subqueries with IN, EXISTS, subqueries restrictions, Nested subqueries, ANY/ALL

clause, correlated subqueries

Normal forms: Functional dependencies, first, second, third, and BCNF normal

forms based on primary keys, lossless join decomposition.

Database Protection: Security Issues, Threats to Databases, Security Mechanisms,

Role of DBA, Discretionary Access Control, Backing Up and Restoring databases

Views: Creating, altering dropping, renaming and manipulating views

DCL Statements: Creating/dropping users, privileges introduction,

granting/revoking privileges, viewing privileges), Transaction control commands –

Commit, Rollback

10 Text Books

1. Fundamentals of Database System, ElmasriRamez, NavatheShamkant, Pearson

Education, Seventh edition, 2017

2. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke,

3rd Edition,2014

3. Murach's MySQL, Joel Murach, 3rd Edition, 3rd Edition, 2019

11 Reference Books

1. Database System Concepts, Abraham Silberschatz, HenryF.Korth, S.Sudarshan,

McGraw Hill,2017

2. MySQL: The Complete Reference, VikramVaswani , McGraw Hill, 2017

3. Learn SQL with MySQL: Retrieve and Manipulate Data Using SQL Commands

with Ease, Ashwin Pajankar, BPB Publications, 2020

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory Examination

of 1 hour duration for 30 marks as per

the paper pattern given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Computer Science Practical 1

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Major Computer Science Practical Course,

encompassing Digital Systems and Architecture as well as

Database Systems, is a comprehensive and hands-on

exploration into the foundational aspects of both hardware

and software that underpin modern computing. This

practical course is designed to provide students with a

holistic understanding of digital systems, computer

architecture, and the effective management of data within

databases.

Relevance:

In an era where seamless integration of hardware and

software is pivotal, the combination of Digital Systems and

Architecture with Database Systems is highly relevant. This

practical course addresses the symbiotic relationship

between the two, offering students a holistic perspective on

building robust computing solutions.

Usefulness:

This course is immensely useful for students aiming to

bridge the gap between hardware and software. By

integrating digital systems with database concepts, students

gain a unique skill set that enables them to design,

implement, and optimize computing systems

comprehensively.

Application:

The skills acquired in this practical course find direct

application in the development of efficient and integrated

computing solutions. Students learn to design digital

systems, optimize hardware performance, and seamlessly

integrate these systems with databases to handle and

manipulate data effectively.

Interest:

The Major Computer Science Practical Course is designed

to spark interest by offering a hands-on approach to both

hardware and software components. Students engage in

practical exercises that involve designing digital circuits,

implementing database solutions, and integrating these

components, fostering a deeper understanding and

appreciation for the intricacies of computing systems.

Connection with Other Courses:

This practical course serves as a nexus, connecting various

other courses in the computer science curriculum. It lays a

foundation for advanced courses in computer organization,

embedded systems, software engineering, and database

management. The integrated approach ensures students

comprehend the synergies between different aspects of

computer science.

Demand in the Industry:

Professionals who can seamlessly navigate both digital

systems and database management are in high demand.

Industries ranging from electronics and telecommunications

to software development and data analytics actively seek

individuals proficient in both hardware and software

aspects, recognizing the practical value of this dual

expertise.

Job Prospects:

Graduates from this practical course enjoy promising job

prospects in roles that require a holistic understanding of

computing systems. Potential job titles include systems

architect, database administrator, embedded systems

developer, and hardware-software integration specialist.

These professionals are well-positioned to contribute to

diverse industries seeking comprehensive computing

solutions.

2 Vertical: Major

3 Type: Practical

4 Credits: 2 credits (1 credit = 30 Hours of Practical work in a

semester)

5 Hours Allotted: 60 hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To verify the truth tables of various logic gates

CO 2. Develop proficiency in designing and implementing digital circuits.

CO 3. Explore various components of digital systems, including processors,

memory units, and input/output interfaces.

CO 4. Develop skills in designing and creating relational databases.

CO 5. Explore the principles of database querying using SQL.

CO 6. Gain practical knowledge of transaction management and data control in

database systems.

8 Course Outcomes (OC):

After successful completion of this course, students would be able to -

OC 1. Verify truth tables of various logic gates

OC 2. Simplify given Boolean expressions and implement them using Logisim.

OC 3. Design and validate the operation of various combinational circuits using

Logisim.

OC 4. Understand the behavior and applications of flip-flops in digital systems.

OC 5. Design and implement expressions using multiplexers/demultiplexers in

Logisim.

OC 6. Create and maintain relational databases, applying normalization principles.

OC 7. Write simple queries to MySQL related to String, Maths and Date Functions.

OC 8. Create tables and insert/update/delete data, and query data in a relational

DBMS using MySQL commands.

OC 9. Handle data permissions.

9 Modules:-

Module 1 (30 hours):

Digital Systems & Architecture – Practical

Logic Gates Truth Table Verification:

Study and verify the truth table of various logic gates (NOT, AND, OR, NAND,

NOR, EX-OR, EX-NOR) using Logisim.

Boolean Expression Simplification:

Simplify given Boolean expressions and realize them using Logisim.

Half/Full Adder Design:

Design and verify the operation of a half/full adder using Logisim.

Half/Full Subtractor Design:

Design and verify the operation of a half/full subtractor using Logisim.

4-Bit Magnitude Comparator:

Design a 4-bit magnitude comparator using combinational circuits in Logisim.

Flip-Flop Implementation:

Verify the operation of flip-flops (e.g., D, JK) using logic gates in Logisim.

Counter Operation Verification:

Verify the operation of a counter using Logisim.

4-Bit Shift Register Operation:

Verify the operation of a 4-bit shift register using Logisim.

Multiplexer/Demultiplexer Design:

Design and implement expressions using multiplexers/demultiplexers in Logisim.

3-Bit Binary Ripple Counter:

Design and implement a 3-bit binary ripple counter using JK flip-flops in Logisim.

The above practical can be performed using any open source simulator (like

Logisim) (Download it from https://sourceforge.net/projects/circuit/)

Module 2 (30 hours):

Fundamentals of Database Systems – Practical

Conceptual Design Using ER Diagrams:

Identify entities, attributes, keys, and relationships. Apply generalization and

specialization.

Database Management Operations:

View all databases, create a database, view all tables in a database, create tables with

and without constraints, perform CRUD operations.

Table Management Operations:

Alter a table, drop/truncate/rename tables, perform backup/restore operations on a

database.

Basic Queries and Aggregate Functions:

Execute simple queries and utilize aggregate functions (e.g., COUNT, SUM, AVG).

Advanced Query Functions:

Utilize date, string, and math functions in queries.

Join Queries:

Execute inner and outer join queries.

Subqueries:

Apply subqueries with IN and EXISTS clauses.

ER Model to Relational Model Conversion and Normalization:

Convert ER model to a relational model and apply normalization up to 3rd Normal

Form.

Views:

Create views with and without check options, drop views, select data from views.

Data Control Language (DCL) Statements:

Implement DCL statements for granting and revoking permissions. Demonstrate

COMMIT and ROLLBACK statements.

These experiments can be implemented using a database management system like

MySQL.

10 Text Books

1. R P Jain, Modern Digital Electronics, Tata McGraw Hill Education Pvt. Ltd. ,

4th Edition, 2010

2. Murach's MySQL, Joel Murach, 3rd Edition, 3rd Edition, 2019

11 Reference Books

1. MySQL: The Complete Reference, VikramVaswani , McGraw Hill, 2017

2. Learn SQL with MySQL: Retrieve and Manipulate Data Using SQL Commands

with Ease, Ashwin Pajankar, BPB Publications, 2020

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be

determined by the completion of practical

tasks and the submission of

corresponding write-ups for each session.

Each practical exercise holds a maximum

value of 5 marks. The total evaluation,

out of 100 marks, should be scaled down

to a final score of 20 marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern given

below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: Introduction to Programming with Python

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

Introduction to Programming with Python Course serves

as an entry point into the world of coding, introducing

learners to the versatile and beginner-friendly Python

language. Python is renowned for its readability and

simplicity, making it an ideal choice for individuals taking

their first steps in programming.

Relevance:

In today’s digital era, programming skills are increasingly

essential across various disciplines. Python, being an

interpreted, high-level language, is relevant for diverse

applications, from web development and data analysis to

artificial intelligence and automation.

Usefulness:

The course provides a foundational understanding of

Python syntax, data structures, and control flow,

empowering learners to write functional and efficient

code. Python’s broad applicability makes the skills

acquired in this course valuable for numerous

programming tasks.

Application:

Upon completion, participants can apply Python to solve

real-world problems, automate repetitive tasks, and create

simple applications. The practical knowledge gained

serves as a stepping stone for more advanced Python

courses or specialization in areas like data science or web

development.

Interest:

Python’s user-friendly syntax and extensive libraries

make it an enjoyable language for beginners. The course

is designed to spark interest by combining theory with

hands-on projects, fostering a passion for coding and

problem-solving.

Connection with Other Courses:

Python is a gateway language that seamlessly integrates

with other programming languages and technologies. The

skills acquired in a Basic Python Programming Course

provide a solid foundation for advanced programming

languages and specialized courses in data science,

machine learning, and more.

Demand in the Industry:

Python’s popularity in the industry is soaring. Its

versatility, readability, and extensive community support

have led to its widespread adoption. Professionals

proficient in Python are in high demand across various

sectors, including technology, finance, healthcare, and

academia.

Job Prospects:

Completion of this Course opens doors to entry-level

positions in software development, quality assurance, data

analysis, and scripting. Python developers are sought after

for their ability to quickly prototype solutions and

contribute to various stages of software development.

2 Vertical: VSC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. Master Python features, execution, and diverse data types.

CO 2. Demonstrate expertise in if statements, loops, and control statements.

CO 3. Efficiently create and manipulate arrays, strings, and data structures.

CO 4. Apply functions, modules, and strings for versatile programming tasks.

CO 5. Effectively manage files, utilize regular expressions, and work with date

and time.

8 Course Outcomes (OC):

OC 1. Apply Python features for diverse programming tasks confidently.

OC 2. Implement control flow statements for precise program execution.

OC 3. Manipulate arrays, strings, and data structures with precision and ease.

OC 4. Create modular, efficient code using functions, modules, and strings.

OC 5. Skillfully manage files, utilize regular expressions, and work with date and

time for program efficiency.

9 Modules:-

Module (30 hours):

Overview and Basic Elements of Python Programming: Features of Python,

Execution of a Python Program, Flavours of Python, Innards of Python, Python

Interpreter, Comments, Docstrings, IDLE, Data types, Dictionary, Sets, Mapping,

Basic Elements of Python, Variables, Input Function, Output Statements, Command

Line Arguments. Operators, Precedence of Operators, Associativity of Operators

Control Statements: The if statement, The if … else Statement, The if … elif …

else Statement, Loop Statement- while loop, for loop, Infinite loop, Nested loop, The

else suite, break statement, continue statement, pass statement, assert statement,

return statement.

Arrays: Creating Arrays, Indexing and Slicing of Arrays, Basic Array Operations,

Arrays Processing, Mathematical Operations on Array, Aliasing Arrays, Slicing and

Indexing in NumPy Arrays, Basic slicing, Advanced Indexing, Dimensions and

Attributes of an Array

Functions: Function definition and call, Returning Results, Returning Multiple

Values from a Function, Built-in Functions, Difference between a Function and a

Method, Pass Value by Object Reference, Parameters and Arguments, Recursive

Functions, Anonymous or Lambda Functions. Modules in Python.

Strings: Creating Strings, Functions of Strings, Working with Strings, Formatting

Strings, Finding the Number of Characters and Words, Inserting Substrings into a

String.

Module (30 hours):

Exploring List, Tuples and Dictionaries: Lists, List Functions and Methods, List

Operations, List Slices, Nested Lists, Tuples, Functions in Tuple.

Working with Dictionaries: Creating a Dictionary, Operators in Dictionary,

Dictionary Methods, Using for Loop with Dictionaries, Operations on Dictionaries

Files in Python: Opening and Closing a File, Working with Text Files, , Working

with Binary Files, The ‘with’ statement, Pickle in Python, The seek() and tell()

Methods, Random Accessing of Binary Files, Zipping and Unzipping Files, Working

with Directories

Regular Expressions: Introduction, Sequence Characters in Regular Expressions,

Special Characters in Regular Expressions, Using Regular Expression on Files,

Retrieving Information from an HTML File

Date And Time in Python: Time, Date, Date and Time Now, combining date and

times, formatting date and time, Finding and comparing dates, Sorting dates,

Knowing the Time taken by a Program, Working with Calendar Module

10 Text Books

1. Practical Programming: An Introduction to Computer Science Using Python 3,

Paul Gries , Jennifer Campbell, Jason Montojo, Pragmatic Bookshelf, 2nd

Edition, 2014

2. Programming through Python, M. T Savaliya, R. K. Maurya & G M Magar,

Sybgen Learning India, 2020

11 Reference Books

1. Python: The Complete Reference, Martin C. Brown, McGraw Hill, 2018

2. Beginning Python: From Novice to Professional, Magnus Lie Hetland, Apress,

2017

3. Programming in Python 3, Mark Summerfield, Pearson Education, 2nd Ed,

2018

4. Python Programming: Using Problem Solving Approach, ReemaThareja,

Oxford Univeristy Press, 2017

5. Let Us Python, Yashwant. B. Kanetkar, BPB Publication, 2019

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 50 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: Statistics with R Programming

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

This course provides an immersive exploration into the

world of statistical computing and data analysis.

Developed specifically for statistical computing and

graphics, R is an open-source language that has become a

standard tool for professionals in various fields.

Relevance:

In the era of big data and analytics, R programming is

highly relevant. It is widely used for statistical modeling,

data visualization, and machine learning, making it an

indispensable skill for individuals in data-centric roles.

Usefulness:

The course equips participants with the ability to

manipulate data, perform statistical analyses, and create

visualizations. R's versatility makes it valuable for both

beginners entering the field and seasoned professionals

enhancing their analytical toolkit.

Application:

R programming finds application across diverse domains,

including finance, healthcare, marketing, and academia.

Participants can apply R to solve real-world problems,

extract insights from data, and make informed decisions.

Interest:

The R programming course often sparks interest due to its

hands-on nature. Participants engage in practical

exercises, exploring datasets, creating visualizations, and

developing statistical models, fostering a deep

understanding of data analytics.

Connection with Other Courses:

This course forms a symbiotic connection with other data-

centric courses. It complements studies in statistics,

machine learning, and data science, providing a

foundation for advanced analytics.

Demand in the Industry:

Professionals with R programming skills are in high

demand. Industries ranging from finance to healthcare

seek individuals who can leverage R for data analysis and

decision-making, contributing to evidence-based

practices.

Job Prospects:

Graduates from an R programming course find diverse job

prospects. Roles may include data analyst, statistician,

business intelligence analyst, and data scientist. These

professionals are sought after for their ability to derive

actionable insights from data.

2 Vertical: SEC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. Understand R basics, set up R Studio, and customize the environment..

CO 2. Master R expressions, assignments, loops, and decision-making.

CO 3. Develop proficiency in using R data structures: vectors, matrices, lists, and

data frames.

CO 4. Demonstrate expertise in character strings manipulation in R.

CO 5. Apply built-in statistical functions, regression analysis, and distribution

functions fluently.

8 Course Outcomes (OC):

OC 1. Confidently navigate Studio, R GUI, and manage data in R.

OC 2. Fluent implementation of expressions, assignments, and loops in R.

OC 3. Use R data structures for effective data management.

OC 4. Efficiently manipulate and operate on character strings in R.

OC 5. Apply statistical functions, regression analysis, and distribution functions

with confidence.

9 Modules:-

Module 1 (30 hours):

Exploring R Language and Setting Up environment: Introduction to R,

Terminologies in R, R Environment, Installing R, Studio, and R Commander,

Customizing Studio, Data Management in Studio, R Graphical User Interface (R

GUI), Working with R Scripts

Implementing ting Expression: Expressions, assignment, Decision making, Loops,

data and time options in R

Essential Data Structures in R: Vectors, Matrix, Arrays, Lists, Data frames,

Functions

Implementing Strings in R: Character strings in R, Character Strings, , Strings and

R objects, String Manipulation: Printing Characters, Basic String Manipulations,

String Operations

Module 2 (30 hours):

Built-in statistical functions in R: mean() function, Median, Standard Deviation,

Some other built-in statistical functions,

Regression Analysis: Regression Analysis-Linear Regression and Multiple

Regression, Normal Distribution- dnorm(),,pnorm(),qnorm(),rnorm()

Binomial Distribution: dbinom(),pbinom(),qbinom(),rbinom() Functions, Time

Series Analysis

Visualizing and analysing Data in R: Tabulation, Contingency Tables, Making R

Contingency Tables, Making R Custom Contingency Tables, Selection of Parts in a

Table Object, Conversion of an Object into the Table, Testing Table Objects, Making

R Complex Tables, Representing data through Cross Tabulation

Graphical Models & analysis: Plots made of Single Plots made of Two Variables ,

Variable, Plots made of Multiple Variables, Special Plots, Storing Graphics

10 Text Books

1. Statistical Programming in R, K.G. Srinivasa G.M. Siddesh,Chetan Shetty ,

Oxford University Press, 2017

2. Learning R: A Language for Data Analytics and Visualization, Sybgen

Learning, R. K. Maurya, 2021

3. Introduction to Statistics and Data Analysis With Exercises, Solutions and

Applications in R: Heumann, Christian, Schomaker, Michael, Shalabh,

Publisher” Springer 2016

11 Reference Books

1. Learning R Programming, Kun Ren, Packt Publishing, 2018

2. R Programming for Statistics and Data Science(Video), 365 Careers, Packt,

2018

3. R Programming Fundamentals, Kaelen Medeiros, Oreily-Packt Publishing

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 100 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: LINUX Operating System

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Linux Operating System course is a foundational

exploration into the world of computing, providing

students with essential knowledge about this open-source

and widely used operating system.

Relevance:

Linux is integral to various industries, from server

administration to software development, cybersecurity,

cloud computing, and IoT, making the course highly

relevant in today's digital landscape.

Usefulness:

Linux dominates global server environments, making it a

crucial skill for managing and maintaining servers

efficiently. Many development tools and environments

are Linux-based, enhancing a developer's capabilities.

Linux, well-known for its robust security features, plays a

pivotal role in the field of cybersecurity, making Linux

knowledge invaluable for professionals in this domain.

Popular cloud platforms extensively use Linux, making

familiarity with it beneficial for cloud administrators.

Linux’s prevalence in IoT devices and embedded systems

underscores its importance for professionals working in

these emerging fields.

Application:

The course introduces students to the core principles and

practical applications of Linux, covering areas such as

server administration, software development,

cybersecurity, cloud computing, and IoT.

Interest:

With its open-source nature and versatile applications,

Linux attracts individuals who appreciate efficient

command-line tools and those interested in stability,

reliability, and the command-line interface.

Connection with Other Courses:

The course seamlessly integrates with network

administration courses by incorporating essential Linux

commands. It also aligns with various software

development courses, fostering a comprehensive

understanding of computing environments.

Demand in the Industry:

The industry recognizes the stability, security, and cost-

effectiveness of Linux, resulting in a consistently high

demand for professionals with Linux expertise.

Job Prospects:

Graduates of the Linux Operating System course are well-

positioned for diverse roles, including system

administrators, network administrators, DevOps

engineers, cloud administrators, cybersecurity analysts,

and software developers.

2 Vertical: SEC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To learn basic concepts of Linux in terms of operating system

CO 2. To learn use of various shell commands with regular expressions

CO 3. To set Linux Environment variables and learn setting file

 permissions to maintain Linux security implementation

CO 4. To learn various editors available in Linux OS and learn shell scripting.

CO 5. To learn installation of compilers and programming using C and

 Python languages on Linux platform.

8 Course Outcomes (OC):

OC 1. Work with Linux file system structure, Linux Environment

OC 2. Handle shell commands for scripting, with features of regular

 expressions, redirections

OC 3. Implement file security permissions

OC 4. Work with vi, sed and awk editors for shell scripting using various

 control structures

OC 5. Install software like compilers and develop programs in C and

 Python programming languages on Linux Platform

9 Modules:-

Module (30 hours):

Introduction to Linux Operating System and Basics: History of Linux, GNU Info

and Utilities, Various Linux Distributions, The Unix/Linux architecture, Features of

Unix/Linux

Installation of Ubuntu Linux Operating System: Booting and Installing from

USB/DVD, Using Ubuntu Software Center / Using Synaptic, Exploring useful

software packages

Becoming an Ubuntu Power User: Administering system and user settings,

Learning Unity keyboard shortcuts, Using the Terminal

Linux Basics: Starting the shell, Shell prompt, Command structure, File Systems

and Directory Structure, man pages, more documentation pages

File System Commands: touch, help, man, more, less, pwd, cd, mkdir, rmdir, ls,

find, etc.

File Handling Commands: cat, cp, rm, mv, more, file, wc, od, cmp, diff, comm,

gzip, gunzip, zip, unzip, tar, ln, umask, etc.

General Purpose Utility Commands: cal, date, echo, man, printf, passwd, script,

who, uname, tty, stty, etc.

Linux File Permissions: Understanding Linux file permissions, Using Linux

groups. Decoding file permissions, Changing security settings, chmod, chown, chgrp

Module (30 hours):

Linux Security: Understanding Linux Security, Uses of root, sudo command,

Working with passwords, Understanding ssh

Networking Commands: who, whoami, ping, telnet, ftp, ssh, etc.

Editors: vi, sed, awk

Simple Filters and I/O Redirection: head, tail, cut, paste, sort, grep family, tee,

uniq, tr, etc.

Shell Scripting: Defining variables, reading user input, exit and exit status

commands, expr, test, [], if conditional, logical operators, Conditions (for loop, until

loop, and while loop), arithmetic operations, Redirecting input/output in scripts,

creating your own redirection.

Working and Managing Processes: sh, ps, kill, nice, at, batch, etc.

Job scheduling commands: ps, nice, renice, at, batch, cron table

Installation of C/C++/Java/Python Compiler and Environment Setup and Basic

programming using C and Python languages.

10 Text Books

1. Linux Command line and Shell Scripting Bible, Richard Blum, Wiley India.

2. Unix: Concepts and Applications, Sumitabha Das, 4th Edition, McGraw Hill.

3. Official Ubuntu Book, Matthew Helmke& Elizabeth K. Joseph with Jose

Antonio Rey and Philips Ballew, 8th Ed.

11 Reference Books

1. Linux Administration: A Beginner's Guide, Fifth Edition, Wale Soyinka, Tata

McGraw-Hill, 2008.

2. Linux: Complete Reference, Richard Petersen, 6th Edition, Tata McGraw-Hill

3. Beginning Linux Programming, Neil Mathew, 4th Edition, Wiley Publishing,

2008.

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 100 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Sem – II

Name of the Course: Design and Analysis of Algorithms

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Design and Analysis of Algorithms course is a

fundamental exploration into the systematic study of

algorithms, their design principles, and the analysis of

their efficiency. It forms the backbone of computer

science education, providing essential skills for solving

complex computational problems.

Relevance:

In the ever-evolving landscape of computer science, the

Design and Analysis of Algorithms course is highly

relevant. It equips students with the intellectual tools

necessary to address challenges in diverse areas, from

software development to artificial intelligence.

Usefulness:

This course is instrumental in cultivating algorithmic

thinking. Participants learn to devise efficient algorithms,

analyze their correctness, and evaluate their performance,

essential skills for creating optimized solutions in various

computing applications.

Application:

The knowledge gained from this course finds application

in a myriad of scenarios, from developing efficient search

and sorting algorithms to optimizing resource utilization

in network design and artificial intelligence.

Interest:

The course often captivates students due to its intellectual

challenges and problem-solving nature. Participants

engage in dissecting complex problems, devising

algorithmic solutions, and analyzing their efficiency,

fostering a deep appreciation for algorithmic thinking.

Connection with Other Courses:

The Design and Analysis of Algorithms course

establishes vital connections with other computer science

disciplines. It forms the basis for advanced courses in data

structures, algorithmic complexity, and computational

theory, providing a holistic understanding of computation.

Demand in the Industry:

Professionals well-versed in algorithm design and

analysis are in high demand. Industries ranging from

technology and finance to healthcare actively seek

individuals who can develop efficient algorithms to solve

complex problems and enhance system performance.

Job Prospects:

Graduates from a Design and Analysis of Algorithms

course find themselves well-positioned for various roles,

including software engineer, algorithm developer, data

scientist, and research scientist. These professionals are

valued for their ability to devise elegant and efficient

solutions to computational challenges.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To make students understand the basic principles of algorithm design

CO 2. To give idea to students about the theoretical background of the basic data

structures

CO 3. To familiarize the students with fundamental problem-solving strategies like

searching, sorting, selection, and recursion and help them to evaluate

efficiencies of various algorithms.

CO 4. To teach students the important algorithm design paradigms and how they

can be used to solve various real world problems

8 Course Outcomes (OC):

OC 1. Students should be able to understand and evaluate efficiency of the

programs that they write based on performance of the algorithms used.

OC 2. Students should be able to appreciate the use of various data structures as

per need

OC 3. To select, decide and apply appropriate design principle by understanding

the requirements of any real life problems.

9 Modules:-

Module 1 (15 hours):

Introduction to algorithms - What is algorithm, analysis of algorithm, Types of

complexity, Running time analysis, How to Compare Algorithms, Rate of Growth,

Types of Analysis, Asymptotic Notation, Big-O Notation, Omega-Ω Notation,

Theta-Θ Notation, Asymptotic Analysis, Performance characteristics of algorithms,

Estimating running time / number of steps of executions on paper, Idea of

Computability

Introduction to Data Structures - What is data structure, types, Introduction to

Array(1-d & 2-d), Stack and List data structures, operations on these data structures,

advantages disadvantages and applications of these data structures like solving linear

equations, Polynomial Representation, Infix-to-Postfix conversion.

Recursion - What is recursion, Recursion vs Iteration, recursion applications like

Factorial of a number, Fibonacci series & their comparative analysis with respect to

iterative version, Tower of Hanoi problem.

Basic Sorting Techniques - Bubble, Selection and Insertion Sort & their

comparative analysis

Module 2 (15 hours):

Searching Techniques - Linear Search and its types, Binary Search and their

comparative analysis, Selection Techniques - Selection by Sorting, Partition-based

Selection Algorithm, Finding the Kth Smallest Elements in Sorted Order & their

comparative analysis, String Algorithms - Pattern matching in strings, Brute Force

Method & their comparative analysis

Algorithm Design Techniques - Introduction to various types of

classifications/design criteria and design techniques, Greedy Technique - Concept,

Advantages & Disadvantages, Applications, Implementation using problems like -

file merging problem. Divide-n-Conquer - Concept, Advantages & Disadvantages,

Applications, Implementation using problems like - merge sort, Strassen's Matrix

Multiplication

Dynamic Programming - Concept, Advantages & Disadvantages, Applications,

Implementation using problems like - Fibonacci series, Factorial of a number,

Longest Common subsequence

Backtracking Programming - Concept, Advantages & Disadvantages,

Applications, Implementation using problems like N-Queen Problem

10 Text Books

1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India

Edition, 2016.

2. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,

CareerMonk Publications, 2016.

3. Introduction to Algorithms, Thomas H. Cormen, 3rd Edition, PHI.

11 Reference Books

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin, Pearson,

3rd Edition, 2011.

2. Design and Analysis of Algorithms, S. Sridhar, Oxford University Press, 2014.

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory

Examination of 1 hour duration for

30 marks as per the paper pattern

given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Introduction to OOP using C++

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Introduction to Object-Oriented Programming (OOP)

using C++ course is a foundational exploration into the

principles of object-oriented programming, using the C++

programming language. This course serves as a gateway

for students to understand and apply key concepts in

software design and development.

Relevance:

In the contemporary software development landscape,

understanding OOP principles is crucial. The C++

language, with its strong support for object-oriented

features, is widely used in building robust and efficient

software systems. This course is, therefore, highly

relevant to the needs of modern programming.

Usefulness:

The course is instrumental in imparting essential

programming paradigms such as encapsulation,

inheritance, and polymorphism. Participants gain

valuable skills in designing modular and reusable code,

contributing to the creation of scalable and maintainable

software solutions.

Application:

The concepts learned in this course find direct application

in software development. Participants learn to structure

code using classes and objects, facilitating the creation of

efficient and well-organized programs.

Interest:

The course often captivates students due to its practical

and creative aspects. Through hands-on projects,

participants engage in designing and implementing

solutions using OOP principles, fostering a deep interest

in software design and development.

Connection with Other Courses:

This course establishes strong connections with other

programming and software engineering courses. It lays

the groundwork for advanced studies in software

architecture, design patterns, and application

development, providing a seamless transition to more

complex programming concepts.

Demand in the Industry:

Professionals with a solid understanding of OOP using

C++ are in high demand. Industries ranging from software

development to embedded systems actively seek

individuals who can leverage OOP principles to create

efficient, modular, and maintainable code.

Job Prospects:

Students completing this course may find diverse job

prospects. Roles may include software developer, systems

analyst, application architect, and embedded systems

engineer. These professionals are valued for their ability

to contribute to the creation of robust and scalable

software solutions.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To make learner understand the concepts of OOP

CO 2. To make learner understand the design of OOP through UML

CO 3. To make learner familiar with the syntax of C++

CO 4. To make learner Analyze and implement concepts of OOP

CO 5. To make learner create programs relating to OOP concepts

8 Course Outcomes (OC):

OC 1. The learner will be able to understand, remember, demonstrate, explain and

describe concept of OOP

OC 2. The learner will be able to design UML based diagrams

OC 3. The learner will be able to illustrate the different types of control

statements in C++

OC 4. The learner will be able to analyze and implement concept of OOP

OC 5. The learner will be able to write and create programs relating to OOP

concepts

9 Modules:-

Module 1 (15 hours):

Introduction to Programming Concepts: Object oriented programming paradigm,

basic concepts of object oriented programming, benefits of object oriented

programming, object oriented languages, applications of object oriented

programming.Tokens-keywords, identifiers, constants-integer, real, character and

string constants, backslash constants, features of C++ and its basic structure, simple

C++ program without class, compiling and running C++ program.

Data Types, Data Input Output and Operators: Basic data types,variables, rules

for naming variables, programming constants, the type cast operator, implicit and

explicit type casting, cout and cin statements,operators, precedence of operators.

Decision Making, Loops, Arrays and Strings: Conditional statements-if,if...else,

switch loops- while, do...while, for, types of arrays and string and string

manipulations

Unified Modeling Language (UML): Introduction to UML & class diagrams.

Classes, Abstraction & Encapsulation: Classes and objects, Dot Operator, data

members, member functions, passing data to functions, scope and visibility of

variables in function.

Constructors and Destructors: Default constructor, parameterized constructor,

copy constructor, private constructor, destructors.

Working with objects: Accessor - mutator methods, static data and static function,

access specifiers, array of objects.

Module 2 (15 hours):

Polymorphism - Binding-static binding & overloading, constructor overloading

function overloading, operator overloading, overloading unary and binary operators.

Modelling Relationships in Class Diagrams: Association, Aggregation-

Composition and examples covering these principles

Inheritance: Defining base class and its derived class, access specifiers, types of

inheritance-single, multiple, hierarchical, multilevel, hybrid inheritance, friend

function and friend class, constructors in derived classes.

Modelling Relationships: Generalization-Specialization and examples covering

these principles

Run time Polymorphism - Dynamic Binding, Function overriding, virtual

function, pure virtual function, virtual base class, abstract class.

Pointers: Introduction to pointers, * and & operators, assigning addresses to

pointer variables, accessing values using pointers, pointers to objects & this pointer,

pointers to derived classes

File Handling: File Stream classes, opening and closing file-file opening modes,

text file handling, binary file handling.

Applying OOP to solve real life applications: To cover case studies like library

management, order management etc. to design classes covering all relationships

10 Text Books

1. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,

McGraw Hill Education India.

2. UML & C++: A Practical Guide to Object Oriented Development,

Lee/Tepfenhart, Pearson Education, 2nd Edition2015

11 Reference Books

1. Mastering C++ by Venugopal, Publisher: McGraw-Hill Education, 2017

2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020

3. Object Oriented Analysis and Design by Timothy Budd TMH, 2001

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory

Examination of 1 hour duration for

30 marks as per the paper pattern

given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Computer Science Practical 2

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Computer Science Practical Course covering Design

and Analysis of Algorithms and Object-Oriented

Programming (OOP) using C++ is a comprehensive

exploration into fundamental computer science concepts

and practical programming skills. It integrates the study

of algorithmic design with hands-on application using the

C++ programming language.

Relevance:

In the dynamic field of computer science, the integration

of algorithmic design and object-oriented programming is

highly relevant. This course equips students with essential

skills to solve complex problems, design efficient

algorithms, and implement practical solutions using the

OOP paradigm in C++.

Usefulness:

The course is invaluable for developing a strong

foundation in algorithmic thinking and software design.

Students learn to analyze algorithm efficiency, apply OOP

principles for code modularity, and create robust software

solutions, enhancing their overall programming

proficiency.

Application:

The concepts acquired in this practical course find direct

application in real-world scenarios. Students engage in

hands-on projects where they design and implement

algorithms, analyze their performance, and develop

software applications using object-oriented principles in

C++.

Interest:

The practical nature of the course often captivates

students. Through project-based learning, participants

apply algorithmic strategies, design class hierarchies, and

implement solutions in C++, fostering a deep interest in

problem-solving and software development.

Connection with Other Courses:

This practical course establishes a strong connection with

other computer science courses. It lays the groundwork

for advanced studies in algorithmic complexity, data

structures, software engineering, and advanced topics in

object-oriented programming, providing a well-rounded

education.

Demand in the Industry:

Professionals with proficiency in algorithmic design and

object-oriented programming in C++ are in high demand.

Industries spanning software development, technology,

and finance actively seek individuals who can apply these

skills to create efficient and scalable software solutions.

Job Prospects:

Graduates from this practical course have diverse job

prospects. Roles may include software engineer,

algorithm developer, systems analyst, or application

developer. These professionals are valued for their ability

to contribute to algorithmically optimized, modular, and

maintainable software.

2 Vertical: Major

3 Type: Practical

4 Credits: 2 credits (1 credit = 30 Hours of Practical work in a

semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. Analyze and implement algorithms for common computational problems.

CO 2. Implement algorithms using divide and conquer strategies.

CO 3. Apply dynamic programming techniques to solve optimization problems.

CO 4. Implement and analyze algorithms based on greedy strategies.

CO 5. Comprehend the principles of object-oriented programming.

CO 6. Design and implement classes and objects in C++.

CO 7. Implement single, multiple, and hierarchical inheritance.

CO 8. Implement operator overloading for user-defined types.

CO 9. Understand the impact of access specifiers on class members.

8 Course Outcomes (OC):

OC 1. Design and implement algorithms for various problem domains.

OC 2. Evaluate and compare the time and space complexities of algorithms.

OC 3. Apply divide and conquer strategies to solve computational problems.

OC 4. Utilize dynamic programming techniques for optimization problems.

OC 5. Implement and analyze algorithms based on greedy strategies.

OC 6. Design and implement classes and objects in C++.

OC 7. Apply inheritance and polymorphism concepts in program development.

OC 8. Implement operator overloading for enhanced class functionality.

OC 9. Utilize advanced features like friend functions, inline functions, and this

pointer.

OC 10. Understand the impact of scope specifiers on class members.

9 Modules:-

Module 1 (30 hours):

Design & Analysis of Algorithms – Practical

Array Operations:

Implement programs for 1-d arrays, Implement programs for 2-d arrays.

List-Based Stack Operations:

Create a list-based stack and perform stack operations.

Linear and Binary Search:

Implement linear and binary search algorithms on a list.

Sorting Algorithms:

Implement sorting algorithms (e.g., bubble, selection, insertion).

Nth Max/Min Element:

Implement algorithms to find Nth Max/Min element in a list.

String Pattern Matching:

Implement algorithms to find a pattern in a given string.

Recursion:

Implement recursive algorithms (e.g., factorial, Fibonacci, Tower of Hanoi).

Greedy Algorithm:

Solve problems like file merging and coin change using the Greedy Algorithm.

Divide and Conquer:

Implement algorithms like merge sort and Strassen's Matrix Multiplication.

Dynamic Programming:

Implement algorithms for Fibonacci series and Longest Common Subsequence

using dynamic programming.

Module 2 (30 hours):

OOPs using C++ – Practical

Introduction to Classes:

Create a simple class with data members and member functions.

Demonstrate the use of class instances to access data and invoke member functions.

Branching and Looping with Classes:

Implement programs utilizing branching and looping statements within class

methods.

Arrays and Classes:

Develop a program that employs one and two-dimensional arrays within a class.

Illustrate how classes can handle array-based data structures.

Scope Resolution Operator:

Use the scope resolution operator to declare variables at different scope levels.

Display and compare the values of variables with different scopes.

Constructors and Destructors:

Implement programs showcasing various types of constructors and destructors.

Explore default, parameterized, copy constructors, and destructor functionalities.

Access Specifiers:

Demonstrate the use of public, protected, and private scope specifiers within a

class.

Understand the impact of different access specifiers on class members.

Inheritance:

Implement classes to demonstrate single and multilevel inheritance scenarios.

Showcase how derived classes inherit properties from the base class.

Develop programs illustrating multiple and hierarchical inheritance.

Create programs that demonstrate the interaction between inheritance and derived

class constructors.

Understand the order of constructor invocation in the inheritance hierarchy.

Advanced Concepts:

Implement programs showcasing friend functions, inline functions, and the use of

the this pointer within classes.

Function Overloading and Overriding:

Develop programs to demonstrate function overloading and overriding within

classes.

Pointers and File Handling:

Explore the use of pointers within classes, emphasizing dynamic memory

allocation.

Develop programs for both text and binary file handling within a class context.

10 Text Books

1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India

Edition, 2016.

2. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,

McGraw Hill Education India.

11 Reference Books

1. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,

CareerMonk Publications, 2016.

2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 100 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: Web Technologies

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Web Technologies Course is an immersive

exploration into the core technologies that drive the visual

and interactive aspects of the web. Covering HTML, CSS,

Javascript, XML, and PHP, this course equips individuals

with the skills needed to create dynamic and aesthetically

pleasing websites.

Relevance:

In the digital age, web design is paramount. The course

remains highly relevant as it introduces participants to the

fundamental languages and technologies that form the

backbone of modern web development.

Usefulness:

The course is invaluable for anyone interested in creating

responsive, user-friendly, and visually appealing

websites. Participants gain practical skills in structuring

web content, styling layouts, and implementing

interactive features.

Application:

The concepts learned in this course find direct application

in real-world web development projects. Participants

design and build websites, applying HTML for structure,

CSS for styling, Javascript for interactivity, XML for data

representation, and PHP for server-side scripting.

Interest:

The creative and hands-on nature of web design often

captivates students. Through practical exercises,

participants engage in designing and developing websites,

fostering a deep interest in creating visually engaging

online experiences.

Connection with Other Courses:

This course establishes strong connections with various

other courses in the field of web development and

computer science. It provides a foundation for advanced

studies in full-stack development, database management,

and server-side scripting.

Demand in the Industry:

Professionals with strong web designing skills are in high

demand. Industries spanning e-commerce, technology,

and media actively seek individuals who can create user-

friendly and visually appealing websites to enhance online

presence and user engagement.

Job Prospects:

Graduates from a Web Designing Course find diverse job

prospects. Roles may include web designer, front-end

developer, UI/UX designer, and web content manager.

These professionals are sought after for their ability to

create visually stunning and functional web interfaces.

2 Vertical: VSC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To understand the concept of Web Technologies

CO 2. To understand the concepts of Hyper Text Markup Language and

 Cascading Style Sheets.

CO 3. To learn JavaScript for creating dynamic websites.

CO 4. To learn various operations performed on data among web

 applications using XML

CO 5. To learn Server-Side Programming using PHP

8 Course Outcomes (OC):

OC 1. Design valid, well-formed, scalable, and meaningful pages using emerging

technologies.

OC 2. Understand the various platforms, devices, display resolutions,

 viewports, and browsers that render websites

OC 3. Develop and implement client-side and server-side scripting language

programs.

OC 4. Develop and implement Database Driven Websites.

OC 5. Design and apply XML to create a markup language for data and document

centric applications.

9 Modules:-

Module 1 (30 hours):

HTML: Fundamental Elements of HTML, Formatting Text in HTML, Organizing

Text in HTML, List Tags, Links and URLs in HTML, Tables in HTML, Images on

a Web Page, Image Formats, Image Maps, Colors, Navigation across multiple pages,

Forms in HTML, Interactive Elements, Working with Multimedia - Audio and Video

File Formats, HTML elements for inserting Audio / Video on a web page

CSS: Understanding the Syntax of CSS, CSS Selectors, Inserting CSS in an HTML

Document, CSS properties to work with background of a Page, CSS properties to

work with Fonts and Text Styles, CSS properties for positioning an element.

JavaScript: Using JavaScript in an HTML Document, Programming, Fundamentals

of JavaScript – Variables, Operators, Control Flow Statements, Popup Boxes,

Functions – Defining and Invoking a Function, Defining Function arguments,

defining a return Statement, Calling Functions with Timer, JavaScript Objects -

String, RegExp, Math, Date, Browser Objects - Window, Navigator, History,

Location, Document, Cookies, Document Object Model, Form Validation using

JavaScript

Module 2 (30 hours):

XML: Comparing XML with HTML, Advantages and Disadvantages of XML,

Structure of an XML Document, XML Entity References, with Internal / External

DTD, XSLT Elements and Attributes

AJAX: AJAX Web Application Model, How AJAX Works, XMLHttpRequest

Object – Properties and Methods, Handling asynchronous requests using AJAX e.g.

Mouseover, button click,

PHP: Variables and Operators, Retrieving data from HTML forms, Program Flow,

Arrays, working with Files and Directories, working with Databases, Working with

Cookies, Sessions, and Headers

10 Text Books

1. HTML 5 Black Book, Covers CSS 3, JavaScript, XML, XHTML, AJAX, PHP

and jQuery, 2ed, Dreamtech Press, 2016

2. Web Programming and Interactive Technologies, scriptDemics, StarEdu

Solutions India, 2018

3. PHP: A Beginners Guide, Vikram Vaswani, TMH

11 Reference Books

1. HTML, XHTML, and CSS Bible Fifth Edition, Steven M. Schafer, WILEY,

2011

2. Learning PHP, MySQL, JavaScript, CSS & HTML5, Robin Nixon, O’Reilly,

2018

3. PHP, MySQL, JavaScript & HTML5 All-in-one for Dummies, Steve Suehring,

Janet Valade Wiley, 2018

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and the

submission of corresponding write-ups for

each session. Each practical exercise holds

a maximum value of 5 marks. The total

evaluation, out of 50 marks, should be

scaled down to a final score of 20 marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical

Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: Database Management Systems Using PL/SQL

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Database Management Systems (DBMS) Using

PL/SQL course is a comprehensive exploration into the

principles and practices of managing databases using the

powerful PL/SQL language. This course provides

participants with the skills needed to design, implement,

and maintain robust database systems.

Relevance:

In the era of information technology, databases serve as

the backbone of applications. The course is highly

relevant as it delves into PL/SQL, a procedural language

designed for seamless interaction with Oracle databases,

one of the most widely used database management

systems.

Usefulness:

The course is invaluable for individuals seeking

proficiency in database management. Participants learn to

harness the capabilities of PL/SQL for efficient data

storage, retrieval, and manipulation, enhancing the

functionality and performance of database systems.

Application:

The concepts learned in this course find direct application

in real-world scenarios. Participants design and

implement database structures, write PL/SQL scripts for

data manipulation, and optimize database performance,

ensuring the efficient operation of data-centric

applications.

Interest:

The hands-on and problem-solving nature of working

with databases and PL/SQL often captivates students.

Through practical exercises, participants engage in

creating and managing databases, fostering a deep interest

in efficient data storage and retrieval.

Connection with Other Courses:

This course establishes strong connections with other

courses in the field of database management, data

analytics, and software development. It provides a

foundation for advanced studies in database optimization,

data warehousing, and application development.

Demand in the Industry:

Professionals proficient in database management using

PL/SQL are in high demand. Industries spanning finance,

healthcare, and e-commerce actively seek individuals

who can design and manage databases to ensure data

integrity, security, and optimal performance.

Job Prospects:

Graduates from a DBMS Using PL/SQL course find

diverse job prospects. Roles may include database

administrator, SQL developer, data analyst, and database

architect. These professionals are valued for their ability

to create and manage databases critical to organizational

success.

2 Vertical: SEC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To develop understanding of concepts and techniques for data

 management

CO 2. To learn about widely used systems for implementation and usage

CO 3. To develop understanding of Transaction management and crash recovery.

8 Course Outcomes (OC):

OC 1. Master concepts of stored procedure, functions, cursors and triggers and its

use.

OC 2. Learn about using PL/SQL for data management.

OC 3. Use efficiently Collections and records.

OC 4. Understand concepts and implementations of transaction management and

crash recovery.

9 Modules:-

Module 1 (30 hours):

Overview of PL/SQL: Advantages of PL/SQL, Main Features of PL/SQL,

Architecture of PL/SQL

Fundamentals of PL/SQL: Character Sets, Lexical Units, Declarations, References

to Identifiers, Scope and Visibility of Identifiers, Assigning Values to Variables,

Expressions, Error-Reporting Functions, Data Types., Control Statements:

Conditional Selection Statements, LOOP Statements, Sequential Control Statements,

GOTO, and NULL Statements.

Sequences: creating sequences, referencing, altering, and dropping a sequence.

Stored Procedures and Functions: Procedures: Types and benefits of stored

procedures, creating stored procedures, executing stored procedures, altering stored

procedures, viewing stored procedures. Functions: Calling function and recursion

function.

Collections and Records: Associative Arrays, Varrays (Variable-Size Arrays),

Nested Tables, Collection Constructors, Assigning Values to Collection Variables,

Multidimensional Collections, Collection Comparisons, Collection Methods,

Collection Types Defined in Package Specifications, Record Variables, Assigning

Values to Record Variables.

Error Handling: Compile-Time Warnings, Overview of Exception Handling,

Internally Defined Exceptions, Predefined Exceptions, User- Defined Exceptions,

Redeclared Predefined Exceptions, Raising Exceptions Explicitly, Exception

Propagation, Unhandled Exceptions.

Module 2 (30 hours):

Cursors: Overview of Cursor, Types of cursors, Invalid cursor Exception.

Static SQL: Description of Static SQL, Cursors Overview, Processing Query Result

Sets, Cursor Variables, CURSOR Expressions,

Transaction Processing and Control: Autonomous Transactions, Commit

Protocol, Concurrency Control, Lock Management, Read-Write Locks, Deadlocks

Handling,

Dynamic SQL: Native Dynamic SQL, DBMS_SQL Package, SQL Injection.

Triggers: Overview of Triggers, implementing triggers – creating triggers, Insert,

delete, and update triggers, nested triggers, viewing, deleting, and modifying

triggers, enforcing data integrity through triggers.

Packages: Overview of a Package. Need of Packages, Package Specification,

Package Body, Package Instantiation, and Initialization. Create nested tables and

work with nested tables.

10 Text Books

1. Mastering PL/SQL Through Illustrations: From Learning Fundamentals to

Developing Efficient PL/SQL Blocks, Dr. B. Chandra, BPB Publication, 2020

2. Oracle Pl/SQL Training Guide., Training guide, BPB Publications, 2016

3. Raghu Ramakrishnam, Gehrke, Database Management Systems, McGraw‐

Hill,3rd Edition, 2014

4. Abraham Silberschatz, Henry F. Korth,S. Sudarshan , Database System

Concepts, 6th Edition 2019

11 Reference Books

1. Ivan Bayross, SQL, PL/SQL -The Programming language of Oracle, B.P.B.

Publications 2009

2. Ramez Elmasri & Shamkant B.Navathe, Fundamentals of Database Systems,

Pearson Education, 2008

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 50 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Name of the Course: Advanced Python Programming

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Advanced Python Programming Course is designed

to elevate coding skills to a more sophisticated level,

offering participants a deeper understanding of Python's

advanced features and capabilities. Building upon the

foundations laid in basic Python courses, this advanced

course delves into complex programming concepts and

techniques.

Relevance:

As technology advances, the relevance of Python

continues to grow. The Advanced Python Programming

Course is a response to the increasing demand for skilled

Python developers who can tackle intricate challenges in

various domains, including software development, data

science, artificial intelligence, and more.

Usefulness:

This course goes beyond basic syntax and introduces

participants to advanced Python topics such as

decorators, generators, metaclasses, and asynchronous

programming. Learners gain valuable insights into

optimizing code performance, enhancing code

readability, and solving complex problems efficiently.

Application:

Graduates of this course can apply their advanced

Python skills to tackle more complex programming

tasks, develop scalable applications, and contribute to

large-scale software projects. The course's emphasis on

practical applications ensures that participants are well-

equipped for real-world programming challenges.

Interest:

The course maintains an engaging learning experience,

balancing theoretical concepts with hands-on projects

that challenge participants to apply their knowledge

creatively. This approach fosters a continued interest in

Python programming and encourages learners to explore

advanced topics with enthusiasm.

Connection with Other Courses:

The knowledge gained in the Advanced Python

Programming Course establishes a strong foundation for

further specialization in advanced Python libraries,

frameworks, and application domains. This course acts

as a bridge to more specialized fields such as machine

learning, web development, and data engineering.

Demand in the Industry:

Professionals with advanced Python skills are highly

sought after in the industry. The ability to leverage

Python's advanced features for efficient problem-

solving, code optimization, and system architecture

places graduates of this course in high demand across

diverse sectors.

Job Prospects:

Completing the Advanced Python Programming Course

opens doors to advanced positions in software

development, data engineering, scientific computing,

and research. Job prospects include roles such as Python

developer, data scientist, machine learning engineer, and

backend developer, among others.

2 Vertical: SEC

3 Type: Practical

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours

of Practical work in a semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. Master OOPs principles, solving real-world problems.

CO 2. Create robust Python classes, transfer members efficiently.

CO 3. Understand and implement inheritance, utilize advanced polymorphism..

CO 4. Implement abstract classes, leverage interfaces for flexible code.

CO 5. Create and synchronize threads, mitigate deadlock issues.

8 Course Outcomes (OC):

OC 1. Demonstrate comprehensive OOPs proficiency, apply principles

effectively.

OC 2. Develop efficient, reusable classes, successfully transfer members.

OC 3. Ability to implement inheritance and apply advanced polymorphism.

OC 4. Ability to implement abstract classes, demonstrate flexibility through

interfaces.

OC 5. Ability to thread creation, synchronization, and effective deadlock

resolution.

9 Modules:-

Module 1 (30 hours):

OOPs In Python: Introduction to OOPs, Problems in Procedure Oriented

Approach, Features of Object Oriented Programming System (OOPS),

Constructors and Destructors,

Classes and Objects- Creating a Class, Self-Variable, Types of Variables, Types

of Methods, Passing Members of One Class to Another Class

Inheritance and Polymorphism: Types of Inheritance, Constructors in

Inheritance, Overriding Super Class Constructors and Methods, super() method,

Polymorphism, Duck Typing , Operator Overloading, Method Overloading,

Method Overriding

Abstract Classes and Interfaces: Abstract Class, Abstract Method, Interfaces in

Python

Threads in Python: Creating Threads in Python, Single Tasking and Multitasking,

Thread Synchronisation, Deadlock in Threads

Module 2 (30 hours):

Working with Databases: DBMS, working with MySQL Database-retrieving,

inserting, deleting, updating rows from table, Creating Database Tables through

Python

Exceptions: Errors in a Python Program, Exceptions and Exceptions handling,

User Defined Exceptions, Logging Exceptions,

Networking: TCP/IP Protocol Architecture, , User Datagram Protocol (UDP), FTP

Architecture, Web Page Operations, Sending a Simple Mail

Graphical User Interface: Creating a GUI in Python, Widget classes, Layout

Manager, Event Handling

Data Science Tools: Introduction to NumPy, Matplotlib, pandas, Scipy,

10 Text Books

1. Practical Programming: An Introduction to Computer Science Using Python

3, Paul Gries , Jennifer Campbell, Jason Montojo, Pragmatic Bookshelf, 2nd

Edition, 2014

2. Programming through Python, M. T Savaliya, R. K. Maurya& G M Magar,

Sybgen Learning India, 2020

11 Reference Books

1. Python: The Complete Reference, Martin C. Brown, McGraw Hill, 2018

2. Beginning Python: From Novice to Professional, Magnus Lie Hetland,

Apress, 2017

3. Programming in Python 3, Mark Summerfield, Pearson Education, 2nd Ed,

2018

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be

determined by the completion of practical

tasks and the submission of

corresponding write-ups for each session.

Each practical exercise holds a maximum

value of 5 marks. The total evaluation,

out of 50 marks, should be scaled down

to a final score of 20 marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical

Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

Letter Grades and Grade Points:

Semester GPA/ Programme

CGPA Semester/ Programme
% of Marks

Alpha-Sign/

Letter Grade

Result

Grading

Point

9.00 - 10.00 90.0 – 100 O (Outstanding) 10

8.00 - < 9.00 80.0 - < 90.0 A+ (Excellent) 9

7.00 - < 8.00 70.0 - < 80.0 A (Very Good) 8

6.00 - < 7.00 60.0 - < 70.0 B+ (Good) 7

5.50 - < 6.00 55.0 - < 60.0 B (Above Average) 6

5.00 - < 5.50 50.0 - < 55.0 C (Average) 5

4.00 - < 5.00 40.0 - < 50.0 P (Pass) 4

Below 4.00 Below 40.0 F (Fail) 0

Ab (Absent) ---- Ab (Absent) 0

